Design and Functional Characterization of a Novel Abscisic Acid Analog

نویسندگان

  • Xiaoqiang Han
  • Lun Jiang
  • Chuanliang Che
  • Chuan Wan
  • Huizhe Lu
  • Yumei Xiao
  • Yanjun Xu
  • Zhongzhou Chen
  • Zhaohai Qin
چکیده

The phytohormone abscisic acid (ABA) plays a crucial role in mediating plant growth and development by recruiting genetically redundant ABA receptors. To overcome its oxidation inactivation, we developed a novel ABA analog named 2',3'-benzo-iso-ABA (iso-PhABA) and studied its function and structural characterization with A. thaliana ABA receptors. The (+)-iso-PhABA form showed much higher ABA-like activities than (+)-ABA including inhibitory effects on the seed germination of lettuce and A. thaliana, wheat embryo germination and rice seedling elongation. The PP2C (protein phosphatases 2C) activity assay showed that (+)-iso-PhABA acted as a potent and selective ABA receptor agonist, which is preferred to PYL10. In some cases, (-)-iso-PhABA showed moderate to high activity for the PYL protein inhibiting PP2C activity, suggesting different mechanisms of action of iso-PhABA and ABA. The complex crystal structure of iso-PhABA with PYL10 was determined and elucidated successfully, revealing that (+)-iso-PhABA was better coordinated in the same binding pocket compared to (+)-ABA. Moreover, the detailed interaction network of iso-PhABA/PYL10 was disclosed and involves hydrogen bonds and multiple hydrophobic interactions that provide a robust framework for the design of novel ABA receptor agonists/antagonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Article: Extraction of abscisic acid and gibberellin from Sargassum muticum (Phaeophyceae) and Gracilaria corticata (Rhodophyta) harvested from Persian Gulf

Phytohormones are present in seaweeds but little is known about occurrence and content of them in seaweeds of Persian Gulf. The aim of this study was extraction of abscisic acid and gibberellin in Sargassum muticum and Gracilaria corticata. The seaweeds were collected bimonthly over one year at Bushehr coasts, Persian Gulf, during a range of environmental conditions. We explored new HPLC method...

متن کامل

Proteomic characterization of tissue expansion of rice scutellum stimulated by abscisic acid.

We found that appropriate treatment with a highly potent and long-lasting abscisic acid analog enhanced the tissue expansion of scutellum during early seedling development of rice, accompanied by increases of protein and starch accumulation in the tissue. A comparative display of the protein expression patterns in the abscisic acid analog-treated and non-treated tissues on two dimensional gel e...

متن کامل

Identification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica

P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran.  The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...

متن کامل

Synthesis and Characterization of Novel Modified and Functionalized Silica Nano-particles for Protein Delivery Applications

In this study, the synthesis, characterization and controlled release behavior of new Hollow Silica Nano particles (HSNPs) and Magnetic Silica Nano Particles (MSNPs) were studied. Magnetic Silica Nano particles (MSNPs), as drug delivery vehicles, were synthesized through the coating of Fe3O4 nano-crystals with silica layers. The HSNPs were obtained by removal of Fe3O4 templates with hydrochlori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017